On the Weyl Representation of Metaplectic Operators

نویسنده

  • MAURICE A. DE GOSSON
چکیده

Abstract. We study the Weyl representation of metaplectic operators associated to a symplectic matrix having no non-trivial fixed point, and justify a formula suggested in earlier work of Mehlig and Wilkinson. We give precise calculations of the associated Maslovtype indices; these indices intervene in a crucial way in Gutzwiller’s formula of semiclassical mechanics, and are simply related to an index defined by Conley and Zehnder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mehlig-wilkinson Representation of Metaplectic Operators

We study the Weyl representation of metaplectic operators suggested by earlier work of Mehlig and Wilkinson. We give precise calculations for the associated Maslov indices; these intervene in a crucial way in the Gutzwiller formula of semiclassical mechanics.

متن کامل

A Weyl Calculus on Symplectic Phase Space

We study the twisted Weyl symbol of metaplectic operators; this requires the definition of an index for symplectic paths related to the Conley–Zehnder index. We thereafter define a metaplectically covariant algebra of pseudo-differential operators acting on functions on symplectic space.

متن کامل

The Pseudo-Character of the Weil Representation and its Relation with the Conley–Zehnder Index

We calculate the character of the Weil representation using previous results which express the Weyl symbol of metaplectic operators in terms of the symplectic Cayley transform and the Conley–Zehnder index.

متن کامل

Coefficients of the n-fold Theta Function and Weyl Group Multiple Dirichlet Series

We establish a link between certain Whittaker coefficients of the generalized metaplectic theta functions, first studied by Kazhdan and Patterson [15], and the coefficients of the stable Weyl group multiple Dirichlet series defined in [3]. The generalized theta functions are the residues of Eisenstein series on a metaplectic n-fold cover of the general linear group. For n sufficiently large, we...

متن کامل

Symplectic Covariance Properties for Shubin and Born—jordan Pseudo-differential Operators

Among all classes of pseudo-differential operators only the Weyl operators enjoy the property of symplectic covariance with respect to conjugation by elements of the metaplectic group. In this paper we show that there is, however, a weaker form of symplectic covariance for Shubin’s τ -dependent operators, in which the intertwiners no longer are metaplectic, but still are invertible non-unitary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005